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Entanglement, Hubbard Model, and Symmetries

Yorick Hardy 1 and Willi-Hans Steeb1,2

Entangled quantum states are an important component of quantum computing tech-
niques such as quantum error-correction, dense coding, and quantum teleportation. We
use the requirements for a state in the Hilbert spaceC2 ⊗ C2 to be entangled to find
when states evolving under the two-point Hubbard model become entangled. We also
investigate the connection of entanglement and discrete symmetries of the two-point
Hubbard model. Furthermore we discuss the inclusion of phonon coupling.
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Entanglement (Hardy and Steeb, 2001; Nielsen and Chuang, 2000; Preskill,
2001; Steeb and Hardy, 2000, 2002, 2004) is the characteristic trait of quantum
mechanics which enforces its entire departure from classical lines of thought. We
consider entanglement of pure states. LetH1 andH2 be two finite dimensional
Hilbert spaces. Thus a basic question in quantum computing is as follows: given a
normalized state|u〉 in the Hilbert spaceH1⊗H2, can two normalized states|x〉
and|y〉 in the Hilbert spacesH1 andH2 respectively be found such that

|x〉 ⊗ |y〉 = |u〉. (1)

In other words, what is the condition on|u〉 such that|x〉 and|y〉 exist? If no
such|x〉and|y〉exist then|u〉 is said to beentangled. The measure for entanglement
for pure statesE(|u〉〈u|) is defined as follows (Hardy and Steeb, 2001; Nielsen
and Chuang, 2000; Preskill, 2001; Steeb and Hardy, 2004)

E(|u〉〈u|) := Sd(ρH1) = Sd(ρH2) (2)

whered = min{dim(H1), dim(H2)} and the density operators are defined as

ρH1 := trH2|u〉〈u|, ρH2 := trH1|u〉〈u| (3)
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and

S(ρ) := −trρ logd ρ (4)

andSdenotes the von Neumann entropy. Here tr denotes the trace and trH1 denotes
the partial trace overH1.

The partial trace can also be calculated as follows. Let

|ψ〉 =
n−1∑
j=0

n−1∑
k=0

cjk | j 〉 ⊗ |k〉,
n−1∑
j=0

n−1∑
k=0

cjkc∗jk = 1

be a pure state in the Hilbert spaceCn ⊗ Cn. We define then× n matrix R as
R := (cjk), where j , k = 0, 1,. . . , n− 1. Then

ρH1 = trH2ρ = RR†.

Under a local unitary transformationU1⊗U2, the matrixR is changed to
R→ UT

1 RU2. The reduced density matrix is thus transformed as

ρH1 →
(
UT

1 RU2
)(

U †2 R†UT†
1

) = UT
1 RR†UT†

1

sinceU1U
†
2 = In. The entanglement of an arbitrary density matrix defined above

is related to a quantity called concurrenceC(ρ) (Wooters, 1998) by the function

S(ρH1) = h

(
1+

√
1− C2(ρ)

2

)
whereh(x) := −x log2 x − (1− x) log2(1− x). For a pure state withn = 2 the
concurrence takes the form

C(|ψ〉〈ψ |) = |〈ψ |(σy ⊗ σy)|ψ∗〉| = 2|c00c11− c01c10|.
We can use the concurrence directly as the measure of entanglement. If the

concurrence is zero (for the casen = 2), the quantum state is separable, otherwise
it is entangled.

As an example we consider the two-point Hubbard model (Steeb and Hardy,
2001). We wish to know when an entangled state results for given parameterst
andU as well as the timeτ required for the system to evolve to these states.

The two-point Hubbard model with cyclic boundary conditions is given by

Ĥ = t(c†1↑c2↑ + c†1↓c2↓ + c†2↑c1↑ + c†2↓c1↓)+U (n1↑n1↓ + n2↑n2↓) (5)

where

nj↑ := c†j↑cj↑, nj↓ := c†j↓cj↓. (6)

The Fermi operatorsc†j↑, c†j↓, cj↑, cj↓ obey the anticommutation relations

[c†j ,σ , ck,σ ′ ]+ = δσσ ′δ jk I , [c†j ,σ , c†k,σ ′ ]+ = [cj ,σ , ck,σ ′ ]+ = 0. (7)
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Ĥ commutes with the total number operatorN̂, and the total spin operator̂Sz in
thez direction

N̂ :=
2∑

j=1

(c†j↑cj↑ + c†j↓cj↓) (8)

Ŝz := 1

2

2∑
j=1

(c†j↑cj↑ − c†j↓cj↓). (9)

We consider the subspace with two electrons,N = 2 andSz = 0. A basis for
2 particles with total spin 0 is

|s1〉 := c†1↑c
†
1↓|0〉, |s2〉 := c†1↑c

†
2↓|0〉, |s3〉 := c†2↑c

†
1↓|0〉, |s4〉 := c†2↑c

†
2↓|0〉
(10)

where〈0|0〉 = 1. Applying Ĥ to the basis gives

Ĥ |s1〉 = t |s2〉 + t |s3〉 +U |s1〉 (11)

Ĥ |s2〉 = t |s1〉 + t |s4〉 (12)

Ĥ |s3〉 = t |s1〉 + t |s4〉 (13)

Ĥ |s4〉 = t |s2〉 + t |s3〉 +U |s4〉. (14)

Identifying |si 〉 with elementsei of the standard basis inC4 yields the matrix
representation of̂H

Ĥ =


U t t 0

t 0 0 t

t 0 0 t

0 t t U

 . (15)

Suppose a Hamilton operator̂K can be written asK̂ = A1⊗ I2+ I2⊗ A2

where A1, A2 ∈ M2 and I2 is the 2× 2 identity matrix. Then we have (Steeb,
1997)

exp(−iK̂ τ/h) = exp(−i τ/h A1⊗ I2− i τ/hI2⊗ A2)

= exp(−i τ/h A1)⊗ exp(−i τ/h A2).

In this case separable states remain separable under time evolution in the
model, and entangled states remain entangled under time evolution in the model.
For the matrix representation of̂H , however we have

Ĥ = tVNOT⊗ I2+ tI2⊗ VNOT+ diag(U, 0, 0,U ), VNOT :=
(

0 1

1 0

)
.



P1: IZO

International Journal of Theoretical Physics [ijtp] PP1183-ijtp-485164 April 29, 2004 0:30 Style file version May 30th, 2002

344 Hardy and Steeb

The diagonal matrix diag(U, 0, 0,U ) cannot be written in the formA1⊗
I2+ I2⊗ A2. Thus we conclude that almost all initial separable states evolve into
entangled states under the time evolution of the model.

The eigenvalues of̂H areE1 = 0, E2 = U, E3,4= 1
2(U ±√U2+ 16t2).

For all U and t the Hamilton operatorĤ can be written as (spectral
representation)

Ĥ =
4∑

j=1

Ej |xj 〉〈xj | (16)

whereEj are the eigenvalues and|xj 〉 are the corresponding orthonormal eigen-
states ofĤ .

To find the time evolution for the two-point Hubbard model we solve the
Schrödinger equation

ih
∂ψ

∂τ
= Ĥψ.

Thus

|ψ(τ )〉 = UĤ (τ )|ψ(0)〉 (17)

where|ψ(0)〉 is the initial state and

UĤ (τ ) := e−iĤτ/h- . (18)

For t = 0, the unitary transformationUĤ (τ ) implements a phase change.
For the initial state|s1〉we find the condition for separability forUĤ (τ )|s1〉 is

UE3m4

(
E4 exp

(
i τ

2h
(E4− E3)

)
− E3 exp

(
i τ

2h
(E3− E4)

))2

= 1

4
exp

(
−i
τ

h
U

)
(19)

where

m := 1√
2

((E3−U )2+ 4t2)−
1
2 .

To satisfy the imaginary part of Eq. (19) we find the condition

E4 sin

(
τ

h
E4

)
− E3 sin

(
τ

h
E3

)
= 0.

Thus we findUĤ (τ )|s1〉 is entangled when the condition is not satisfied.
For the initial state|s2(τ )〉 we find the condition for separability for

UĤ (τ )|s2〉 is

UE−1
4 m4 exp

(
−i
τ

h
U

)(
E2

4 exp

(
i τ

2h
(E4− E3)

)
− E2

3 exp

(
i τ

2h
(E3− E4)

))2

= 1

4
.

(20)
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To satisfy the imaginary part of Eq. (20) we find the condition

E2
4 sin

(
τ

h
E3

)
− E2

3 sin

(
τ

h
E4

)
= 0.

Thus we findUĤ (τ )|s2〉 is entangled when the condition is not satisfied.
ForUĤ (τ )|s3〉 (respectivelyUĤ (τ )|s4〉) we find the condition for separability

is identical to that forUĤ (τ )|s2〉 (respectivelyUĤ (τ )|s1〉).
Next we determine the conditions that the states

|8+〉 := 1√
2

(|s1〉 + |s4〉), |8−〉 := 1√
2

(|s1〉 − |s4〉)

|9+〉 := 1√
2

(|s2〉 + |s3〉), |9−〉 := 1√
2

(|s2〉 − |s3〉)

are entangled under time evolution of the model. They are maximally entangled
states. These are the Bell states and form a basis inC4.

ForUĤ (τ )|8+〉 we find the condition for separability

2U E3m4

(
E4 exp

(
i τ

2h
(E4− E3)

)
− E3 exp

(
i τ

2h
(E3− E4)

))2

= 0. (21)

Thus whenUĤ (τ )|8+〉 is not entangledUĤ (τ )|s1〉 andUĤ (τ )|s4〉 are entangled
and vice versa. ForU 6= 0 the condition becomes

E4 = E3 exp

(
i
τ

h
(E3− E4)

)
which has no real solutions forτ . ThusUĤ (τ )|8+〉 is entangled for allτ .

ForUĤ (τ )|8−〉 we find the condition for separability

exp

(
−2i

τ

h
U

)
= 0. (22)

Of course, this equation cannot be satisfied. ThusUĤ (τ )|8−〉 is entangled
for all τ . ForUĤ (τ )|9+〉 we find the condition for separability

−2U E−1
4 m4

(
E2

4 exp

(
i τ

2h
(E4− E3)

)
− E2

3 exp

(
i τ

2h
(E3− E4)

))2

= 0. (23)

Thus whenUĤ (τ )|9+〉 is not entangledUĤ (τ )|s2〉 andUĤ (τ )|s3〉 are entangled
and vice versa. We find thatUĤ (τ )|9+〉 is entangled for allτ .

ForUĤ (τ )|9−〉 we find the condition for separability,1
2 = 0, cannot be sat-

isfied. ThusUĤ (τ )|9−〉 is entangled for allτ .
The behavior described above can be understood if we realize that the Hubbard

model admits a discrete symmetry under the change 1→ 2, 2→ 1. Thus we
have a finite group with two elements. We obtain two irreducible representation
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(Steeb, 2003). The group-theoretical reduction leads to the invariant subspaces

S1 =
{
|ψ1〉 = 1√

2
(c†1↓c

†
1↑|0〉 + c†2↓c

†
2↑|0〉, |ψ2〉 = 1√

2
(c†1↓c

†
2↑|0〉 + c†2↓c

†
1↑|0〉)

}
S2 =

{
|ψ3〉 = 1√

2
(c†1↓c

†
1↑|0〉 − c†2↓c

†
2↑|0〉, |ψ4〉 = 1√

2
(c†1↓c

†
2↑|0〉 − c†2↓c

†
1↑|0〉)

}
.

These four states can be considered as the Bell states. In the Bell basis the
matrix representation of the Hubbard model is given by (where we use the ordering
|8+〉, |9+〉, |9−〉, |9−〉) 

U 2t 0 0

2t 0 0 0

0 0 U 0

0 0 0 0

 .
Thus the ground state is not a Bell state, but it is also not a separable state.

We used a program to perform the symbolic calculations and most of the sim-
plification of the separability conditions given above. The program makes use of
SymbolicC++ (Shi et al., 2000) to do the calculations and simplification. The
Hubbard model can also be considered in Bloch representation. The entanglement
can be considered in the momentum space. It is also worthwhile to consider en-
tanglement of the two-dimensional Hubbard model with phonon coupling (Steeb
et al., 1986).

Ĥ = t
∑

σ∈{↑,↓}
(c†1σc2σ + c†2σc1σ )+U (n1↑n1↓ + n2↑n2↓)

+ωb†b+ k
∑

σ∈{↑,↓}
(c†1σc2σ + c†2σc1σ )(b† + b)

whereb, b† are the Bose annihilation and creation operators for the vibrational
mode, respectively. In this case we have a product space of the states given above
and the number states|n〉 = (n!)−1/2(b†)n|0〉 with b|0〉 = 0, 〈0|0〉 = 1 andn =
0, 1, 2,. . . .For S′z = 0 the basis in the product space is now given as

S′1 = {|ψ1〉 ⊗ |n〉, |ψ2〉 ⊗ |n〉, n = 0, 1, 2,. . .}
S′2 = {|ψ3〉 ⊗ |n〉, n = 0, 1, 2,. . .}
S′3 = {|ψ4〉 ⊗ |n〉, n = 0, 1, 2,. . .}

For the subspaceS′1 we obtain

Ĥ |ψ1〉 ⊗ |n〉 = 2t |ψ2〉 ⊗ |n〉 + (U + nω)|ψ1〉 ⊗ |n〉
+ 2k(n+ 1)1/2|ψ2〉 ⊗ |n+ 1〉 + 2kn1/2|ψ2〉 ⊗ |n− 1〉
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Ĥ |ψ2〉 ⊗ |n〉 = 2t |ψ1〉 ⊗ |n〉 + nω|ψ2〉 ⊗ |n〉
+ 2k(n+ 1)1/2|ψ1〉 ⊗ |n+ 1〉 + 2kn1/2|ψ1〉 ⊗ |n− 1〉.

In the subspaceS′2 we have the energy levelsU + nω (n = 0, 1, 2. . .) and in
the subspaceS′3 we findnω (n = 0, 1, 2,. . .). In both cases the eigenvalues do not
depend onk. This allows to study entanglement between Bose and Fermi states. For
example, we could consider entangled states such as1√

2
(|ψ1〉 ⊗ |0〉 + |ψ2〉 ⊗ |1〉).
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