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Entanglement, Hubbard Model, and Symmetries

Yorick Hardy * and Willi-Hans Steeb!?

Entangled quantum states are an important component of quantum computing tech-
nigues such as quantum error-correction, dense coding, and quantum teleportation. We
use the requirements for a state in the Hilbert sg@&e® C? to be entangled to find

when states evolving under the two-point Hubbard model become entangled. We also

investigate the connection of entanglement and discrete symmetries of the two-point

Hubbard model. Furthermore we discuss the inclusion of phonon coupling.
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Entanglement (Hardy and Steeb, 2001; Nielsen and Chuang, 2000; Preskill,
2001; Steeb and Hardy, 2000, 2002, 2004) is the characteristic trait of quantum
mechanics which enforces its entire departure from classical lines of thought. We
consider entanglement of pure states. HgtandH, be two finite dimensional
Hilbert spaces. Thus a basic question in quantum computing is as follows: given a
normalized stat¢u) in the Hilbert spacé{; ® H>, can two normalized statés)
and|y) in the Hilbert space®{, andH, respectively be found such that

1X) ® y) = |u). 1)

In other words, what is the condition ¢gm) such thaix) and|y) exist? If no
such|x) and|y) exist therju) is said to beentangledThe measure for entanglement
for pure state€(|u)(u|) is defined as follows (Hardy and Steeb, 2001; Nielsen
and Chuang, 2000; Preskill, 2001; Steeb and Hardy, 2004)

E(lu)(u)) := Si(on,) = Silor,) 2

whered = min{dim(H31), dim(H2)} and the density operators are defined as

pHy =1t lu)ul, oy, =t U (Ul (3
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and

S(p) = —trplogy p (4)

andSdenotes the von Neumann entropy. Here tr denotes the trace grigtrotes
the partial trace ovek{;.
The partial trace can also be calculated as follows. Let
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be a pure state in the Hilbert spa@é ® C". We define then x n matrix R as
= (ck), wherej, k=0,1,...,n—1.Then

PH, =0 = RFé‘

Under a local unitary transformatidy ® U,, the matrixR is changed to
R — UJRU,. The reduced density matrix is thus transformed as

pr, — (U{RW)(UJRTU[T) = UTRRU,!

sinceU1U2T = |,,. The entanglement of an arbitrary density matrix defined above
is related to a quantity called concurrer@gp) (Wooters, 1998) by the function

1+,/1-C2
S(or) = h (— Vz(’”)
whereh(x) := —xlog, x — (1 — x) log,(1 — x). For a pure state with = 2 the

concurrence takes the form

CU¥ )Y = (¥ l(oy ® oy)l¥™)| = 2CooC11 — CosC1ol-

We can use the concurrence directly as the measure of entanglement. If the
concurrence is zero (for the case- 2), the quantum state is separable, otherwise
it is entangled.

As an example we consider the two-point Hubbard model (Steeb and Hardy,
2001). We wish to know when an entangled state results for given pararheters
andU as well as the time required for the system to evolve to these states.

The two-point Hubbard model with cyclic boundary conditions is given by

HA = t(C}L_TCa + CLCZl + C;TCM + C;¢01¢) + U (annlL + nngzw (5)
where
- of ot
Njp 1= Cj4Cj1, Nj, i=Cj,Cjy. (6)
The Fermi operators}T, ch, Cj+, Cj, obey the anticommutation relations

[c], 6ol = 8oadil,  [C],. ¢l =[Cio Chols =0 (7)
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H commutes with the total number operatér and the total spin operat&; in
thez direction

2

N = (cl,cir + ¢ ci)) (8)
=t
S S i
=3 > (clicir — ¢ jcp). 9)
=1

We consider the subspace with two electrdxisz 2 andS, = 0. A basis for
2 particles with total spin O is

s =cl,cl, 10, Is)i=clcl 10, s i=clicl 10, Isa) = clich 10

where(0[0) = 1. Applying H to the basis gives (o)
Hisi) = tIsz) + tiss) + Usy) (11)
Hisy) = tisy) + t]s) (12)
Hiss) = tIsy) + t|su) (13)
Hiss) = tisp) + tIss) + U|ss). (14)

Identifying |s ) with elements of the standard basis @* yields the matrix
representation ofl

I
I

(15)
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Suppose a Hamilton operatt can be written aK = A, @ I, + 1, ® A,
where A;, A» € M? and |, is the 2x 2 identity matrix. Then we have (Steeb,
1997)
exp(iKz/h) = exp(—it/hA ® I, —it/hl, ® Ay)
=expit/hA) ® expit/hAy).
In this case separable states remain separable under time evolution in the

model, and entangled states remain entangled under time evolution in the model.
For the matrix representation ef, however we have

A . 01
H =tVW\or ® I2+tI2®VNOT—|—d|ag(U, 0, O,U), Vot = <1 O) .
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The diagonal matrix diagl, 0, 0,U) cannot be written in the form; ®
I, + I ® Az. Thus we conclude that almost all initial separable states evolve into
entangled states under the time evolution of the model.

The eigenvalues dfl areE; = 0, E, = U, Ez4= %(U + U2+ 16t2).

For all U andt the Hamilton operato] can be written as (spectral
representation)

4
=Z EjIx;) (%] (16)
j=1

whereE; are the eigenvalues amxi;) are the corresponding orthonormal eigen-
states ofH.

To find the time evolution for the two-point Hubbard model we solve the
Schiodinger equation

Iy -
ih 3 = H.
Thus
[¥(z)) = Ug (1)1¥(0) 17)
where|y(0)) is the initial state and
Ug(r) = e H/N, (18)

Fort = 0, the unitary transformatiod ; (z) implements a phase change.
For the initial statés;) we find the condition for separability f&f; (v)|s1) is

. . 2
it it 1 T
UEsm* (E4 exp(E(Eél — E3)) —E3 exp(E(Eg - E4)>) =3 exp(—| EU)

(19)
where
1 1
m:= —((Es — U)? 4 4t?) 2,
ﬁ(( 3—U) )
To satisfy the imaginary part of Eq. (19) we find the condition

. T . T
E —E4) —E —Esz) =0.
4SIn<h 4) 3SIn<h 3)

Thus we findJy (7)|s1) is entangled when the condition is not satisfied.
For the initial state|s,(r)) we find the condition for separability for
Un(1)lse) is

2
UE;1m4exp<—i%U><E4exp< (E4—E3)> E3exp< (Eg—E4))> =%.

(20)
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To satisfy the imaginary part of Eq. (20) we find the condition

. T . T
E2 sm(E E3> — E2 sm(E E4> =0.

Thus we findJ;(7)|s2) is entangled when the condition is not satisfied.
ForUg(7)|ss) (respectivelyd,; (7)|ss)) we find the condition for separability
is identical to that fol; (7)|s,) (respectively; (7)|s1)).
Next we determine the conditions that the states
1 1

+\ . -\ _

[P7) = ﬁ(|51>+|84)), [®7) = ﬁ(lsﬂ S4))
+y . 1 —\ 1 .

(W) = —ﬁ(lsﬂ + s3)), W) = —ﬁ(lsz) 3))

are entangled under time evolution of the model. They are maximally entangled
states. These are the Bell states and form a ba§ié.in
ForUy(z)|®™) we find the condition for separability

. . 2
2U Esm’ <E4 exp(lz—;(E4 - E3)> — Es exp(lz—;(Eg - E4)>> —0. (1)

Thus whenU,(z)|®*) is not entangledy; (z)|s1) andUy(7)|ss) are entangled
and vice versa. Fdd = 0 the condition becomes

Es = E3 exp(i %(Eg — E4)>

which has no real solutions far. ThusUy(z)|®*) is entangled for alt.
ForUy(7)|®~) we find the condition for separability

exp(—Zi %u) —o. (22)

Of course, this equation cannot be satisfied. THy¢c)|®~) is entangled
for all z. ForUy ()| &™) we find the condition for separability

. . 2
_2UE;m? (E}{ exp(lz—;(E4 - E3)> _E2 exp('z—;(lz3 _ E4)>> —0. (23)

Thus whenUy ()W) is not entangled)y; (7)|s;) andUy(z)|ss) are entangled
and vice versa. We find thak; (z)|W™) is entangled for alt.

For Uy (7)|¥~) we find the condition for separabilit%, = 0, cannot be sat-
isfied. ThusJy (7)|¥ ™) is entangled for alt.

The behavior described above can be understood if we realize that the Hubbard
model admits a discrete symmetry under the change 2,2 — 1. Thus we
have a finite group with two elements. We obtain two irreducible representation
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(Steeb, 2003). The group-theoretical reduction leads to the invariant subspaces

1 1

S = {nm = ﬁ(chLm +ch chl0), [¥2) = 72(ch£¢|0> +c£¢cL|0>)}
1 1

S = {|w3> = ﬁ(cﬁcm —cb,ch,10), [va) = 72(ci¢c£¢|0> — c&ch))}.

These four states can be considered as the Bell states. In the Bell basis the
matrix representation of the Hubbard model is given by (where we use the ordering
|DF), (), [¥7), W)

u 2zt 00
2.0 0 O
0O OU O
0 0 0O

Thus the ground state is not a Bell state, but it is also not a separable state.
We used a program to perform the symbolic calculations and most of the sim-
plification of the separability conditions given above. The program makes use of
SymbolicG++ (Shi et al, 2000) to do the calculations and simplification. The
Hubbard model can also be considered in Bloch representation. The entanglement
can be considered in the momentum space. It is also worthwhile to consider en-
tanglement of the two-dimensional Hubbard model with phonon coupling (Steeb
et al, 1986).

H=t > (cl,Co +¢},C) + U(Nynyy + Nainzy)
oe{t I}

+oblb+k Y (cl,co + b, c1,)(0" +b)
o)

whereb, bt are the Bose annihilation and creation operators for the vibrational
mode, respectively. In this case we have a product space of the states given above
and the number statés) = (n!)~%/2(b")"|0) with b|0) = 0, (0|0) = 1 andn =

0,1, 2,....For§ = 0 the basis in the product space is now given as

S ={y)®In), Y2 ®@In), n=0,1,2,..}
S={ys)®In), n=0,1,2,...}
Ss={ys)®In), n=0,1,2,...}
For the subspac8, we obtain
Hly) ® In) = 2t[y2) ® In) + (U + now)|y1) @ )
+2k(n+ 1)"2|y2) ® In + 1) + 2% r) @ In — 1)
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Hv2) ® [n) = 2t|y1) ® [n) + Noly2) @ n)
+2K(n + 1)Y2)y) @ [N+ 1) + 2knY2|y) @ |n — 1).

In the subspacg, we have the energy levels + nw (n =0, 1, 2...) and in
the subspacg; we findnw (n =0, 1, 2,...). In both cases the eigenvalues do not
depend okk. This allows to study entanglement between Bose and Fermi states. For
example, we could consider entangled states su%@&l) ® 0) + |¥2) ® |1)).
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